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Resonant effect of plasma waves on charged particles 
in a magnetic field 

By J. W. DUNGEY 
A. W .R.E., Aldermaston 

(Received 14 July 1962) 

Resonances are discussed between electrons and protons and waves of whistler 
and hydromagnetic types. The conditions of resonance are investigated. Approxi- 
mations for the effects on the particles are obtained. The occurrence of a ‘trap- 
ping ’ phenomenon is demonstrated and the effect on velocity distributions is 
discussed. 

1. Introduction 
An important simplification in the very complicated subject of collision-free 

plasma results from the fact that, when the varying part of the field is represented 
by waves, a charged particle with a particular velocity interacts much more 
strongly with waves of certain frequencies than with others. A number of workers 
(for a review see Vedenov, Velikhov 8: Sagdeev 1961) have studied the dispersion 
equation for a uniform plasma in a uniform magnetic field. Then the perturbation 
in the velocity distribution is found to have singularities a t  the velocities a t  which 
the frequency seen by the particles is an integral multiple of their gyro-frequency, 
and this is the resonance condition. Here the effect of a wave on an individual 
particle is studied, the motion of the particle through the wave field being included 
in the calculations. 

One restriction is imposed on the type of wave considered, which is related to 
the possibility of working in a frame of reference in which the wave is static. 
Changes in the frame of reference are restricted to motion parallel to the un- 
perturbed magnetic field B, because motion across this field would introduce a 
uniform electric field. If the wave normal makes an angle 0 with B and the phase 
velocity is w, the existence of such a frame in which the wave is static requires 
w < c cos 8. This is assumed, and is not a very severe restriction, since the waves 
studied later in the paper are slow. If w > c cos 0, a relativistic transformation is 
possible to a frame in which the wave normal is perpendicular to B, and the effect 
of such waves on particles is of a different kind. 

The analysis presented here depends on the unperturbed state being uniform 
and is restricted to the effect of a single sinusoidal wave. The limitations of this 
formulation are discussed towards the end. Even with these limitations it is a 
sizable task to cover the whole spectrum of waves, and the intention here is mainly 
to sort out the possibilities, leaving a number of them for later exploration. 
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2. First-order effect on a particle 

unperturbed trajectory which is a helix 
The first-order effect on a particle is obtained simply by integrating along the 

x = a cos Qt, y = a sin Qt, z = vII t ,  (1) 

where the z-axis is parallel to B, Q is the angular gyrofrequency,and Qu = wl. 

static and use the wave-field components 
To calculate only the change in v,, we work in the frame in which the field is 

E, = E cos (a + v), B, = b, cos (p, + v), B, = b, cos (p, + cp), ( 2 )  

where pl = kysinB+ kzcosB, the wave number k is perpendicular to the x-axis 
and a, p, and p, are constant phase angles. 

The equation of motion is, using (l) ,  

(m/e) dv,,/dt = E, - (v,/c) (B, sin Qt + B, cos Qt). (3) 

It is convenient to introduce R = - kasin8 and N = kv,, cosB/Q, N being an 
integer when resonance occurs. Since a is the Larmor radius and 277vl,/Q is the 
pitch of the helix, R and N depend on the ratio of these to the wavelength. Then 
using ( I ) ,  # = - R sin Bt+ Not .  

One turn of  the helix corresponds to a time 2n/Q and to a change in phase of the 
wave of 277N. The changes Sv,, in particle velocity parallel to B in successive 
turns of the helix will then be proportional to cos (y  + 277Nn) where y is some 
constant and n refers to the nth turn. Then the total change after a large number 
of turns is a Fourier sum and has resonances when N is an integer. The calculation 
of Sv will now be performed for integral values of N .  

We use 
(an’’ cos (NQt - R sin Q t )  dt = 277Q-1 &(R) (4) 

JO 

and 

Using ( 2 )  

/ozr”sin (NQt  - R sin Qt) dt = 0. 

B, sin fi t  + B, cos Qt = b, cos (Q - at) + b-, cos (Q + Qt) + b-, sin (Q - Qt) 

+ b-, sin (# + Qt), 

where b, = +(b,cosp,+b,sin~,), b-, = i(b,cosp,-b,sinp,), 

and b; and b‘, are similar but irrelevant, and they all represent circularly 
polarized components. Then integrating (3) from 0 to Zn/Q and multiplying by 
cQ/2n  gives 

B6~,,/277 = CE cos aJn-(R) - v,[blJK-l(R) + b-,Jjq+l(R)]. ( 5 )  

3. The resonant velocities 
The resonant values of v,, are just integral multiples of QsecB/k, but it is 

necessary to consider the dependence of the Bessel functions in ( 5 )  on R. The 
oscillatory behaviour of the Bessel functions is not so important here as the fact 
that Bessel functions of high order are very small when the argument is small. 
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When R < N J ,  J,,(R) z ( R / 2 ) N / N !  and, a stronger property, if N 9 1, J,(R) 4 1 
for any value of R appreciably less than N .  For large values of N ,  therefore, 
resonance is ineffective, if R is appreciably less than N ,  which reduces to v1 being 
appreciably less than v , ~  cot 8 in the frame of the wave. Assuming that any of the 
terms in (5) can be important the pattern of velocities a t  which resonance is 
effective appears as in figure 1. The spacing between the lines is Cl see O/k and the 
bottoms of the lines lie approximately on a line of slope cot 8. Suppose now that 

FIGURE 1. Resonant velocities in the frame of the wave. 

the plasma defines a natural frame of reference in which there is no steady electric 
field, so that this frame is moving relative to the wave in the direction of B. Let 
the wave’s angular frequency be w and phase velocity w = w / k .  In  this frame the 
pattern of resonant velocities is shifted parallel to the v , ~  axis by w see 8 and 

vl, = w see 8( 1 -I N Q / w ) ,  (6) 

where the -I depends on the sign of the charge on the particle. The sign can most 
easily be checked by putting w = Q, vll = 0, N = 2 1 and looking a t  (5); the term 
with J ,  will be b, or b-, and this must rotate in the same sense as the particle 
concerned. 

It is now necessary to consider the wave speed, which should be calculated from 
the dispersion equation using the velocity distribution of the plasma. The theory 
of the dispersion equation is available only for restricted cases, however, and 
tends to be untrustworthy when there is a lot of overlap between the regions of 
velocity space occupied by the main body of the plasma particles and the 
resonant velocities. Clearly this depends strongly on the value of w compared to 
the velocity spread of the main body of particles. If w is small the scale of 
figure 1 is small and many resonances are important. With regard to very slow 
waves then, little more can be said without further development of dispersion 
equations. The converse is useful, however, that, for waves which are not too 
slow according to known dispersion equations, the resonances should not have 
a very strong effect on the dispersion, because few particles are involved. 

The dependence of the resonant velocities on frequency can be seen from (6). 
For very low frequencies, w < Q, the resonant velocities are widely spaced com- 
pared to w and it is likely that the resonance N = 0, corresponding to particles 
moving with the wave, is most important. For very high frequencies, o 9 0, the 
resonances are closely spaced, and then the limitation that R should not be 
appreciably less than N is important and figure 1 shows that there is a minimum 
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speed required for resonance of approximately w. In order to get resonance for 
speeds much less than w it  is necessary to have w N Q, for zero speed the require- 
ment being w = L2 with N = * 1. It is possible to be more specific by using an 
approximate dispersion equation. Dispersion equations are known to first order 
in the plasma temperature, but here for simplicity we use the zero temperature 
approximation, which is summarized in the Appendix. This treatment is well 
justified when there is a cool plasma and the interest is in interactions between 
waves and suprathermal particles, which are not sufficiently numerous to have 
much effect on the wave. An example of this is the interaction of waves in the 
exosphere with energetic particles of the Van Allen belt, where the most numerous 
particles belong to a hydrogen plasma a t  about 1 O O O O K .  It is further assumed 
that B2 -g 47rnmec2, implying that Qe is much less than the plasma frequency. 
Then no modes propagate at frequencies between fie cos 0 and the plasma fre- 
quency, and attention will here be confined to lower frequencies, though there are 
slow waves of plasma-oscillation type near the plasma frequency. In  the range 
Q, -g w Qe cos 0, only the whistler mode propagates and a convenient approxi- 
mation is (see Appendix) 

where vA is the Alfven velocity. At lower frequencies w - vA, except that when 
the second mode appears a t  w z a,, its velocity is very small over a narrow 
band of frequencies, but the very slow waves are not to be discussed. The waves 
with w - v, may be regarded as hydromagnetic. The effects on electrons and 
protons need separate discussion. It is convenient to express particle energies as 
multiples of W = B2/87rn, the magnetic energy per electron or proton, which is 
also imp v:. 

Electrons. Because Qe > w ,  the resonances are widely spaced. The energy 
required for resonance with N = 0 is N (w/Qe) Wsec8 for whistlers and 
21 (m,/m,) Wsec28 for hydromagnetic waves. The energy for N = 1 is 
2: (Qe/w) W see 0 for whistlers and 2: (ae Qp/w2)  W see2 0 for hydromagnetic 
waves, and typically the value (m,/m,) W (for w = Q,sec8) is rather a large 
energy. 

Protons. For w < Q,, the story is similar to that for electrons. N = 0 requires 
an energy 2: W see2 0 and N = 1 requires one 2: ( Q , / W ) ~  W see2 0, these energies 
being respectively larger and smaller than the corresponding values for electrons. 

For o - Qp, very slow protons can resonate with N = 1, as already mentioned, 
but this will not be further pursued. 

For w 9 Q,, the resonances are narrowly spaced. The minimum energy for 
resonance is imp  w2, or, since ( 7 )  is then valid, (w/Q,) W cos 8. 

The overall conclusions are that, except near special frequencies, the important 
resonance for electrons is N = 0 ,  while protons generally need energies rather 
greater than W in order to resonate. 

(W/VAI2 = (w/Q,) (cos 8 - w/Q2,), (7)  

4. The velocity change 
In  the frame of the wave, the wave being static, the electric field has a potential 

which varies sinusoidally with wave phase. Then a resonant particle, returning 
t o  the same phase after each turn of its trajectory, has its energy conserved to 
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first order, so that v, 6v, = - vll dv,,. In  this frame therefore the direction of the 
2-vector (v,,, v,) is changed by an angle 6 = Sv,,/v, determined by (5). We now have 
to consider the relative importance of the terms in ( 5 ) ,  using the ratios of the 
wave components from the Appendix. 

When o 9 Qp we have (7 )  and 

wbJcE z (Q,/w) cos I9 (cot &?)l. (8) 

For the cases N = 0 and 1, R can be small and it may be supposed that J,(R) z 1 
and J,(R) z $R. Then we get 

For larger values of N it  may be supposed that &(R) and JN-l(R) are comparable 
and (8) multiplied by vi/w then gives the relevant comparison. These results apply 
to whistlers and in general it is seen that the electric and magnetic terms do not 
usually differ by an enormous factor. For frequencies below Qp the expression 
for E/b, is more complicated (see Appendix), but in general the magnetic terms 
dominate. From (5) then 

or more if the electric term dominates. This is the change for one turn of the 
helical trajectory and the total change is obtained by multiplying by the number 
of turns over which the resonance is effective. 

6 2?dbllB) J N - l W  (9) 

5. Particle trapping 
In  practise for very weak waves the limitation to the resonance will arise from 

non-uniformity of the unperturbed field or from the departure of the wave from 
sinusoidal form. In  the former case the number of turns of the helix over which 
resonance is effective is of order {27rvIl d( Q - l ) / d ~ } - * ~  which is generally larger for 
electrons than for protons. In  the latter case the number of wave periods over 
which resonance is effective is of order {27rd(w-l)/dt}*, in a frame following the 
mean motion of the particle concerned. If the wave is not too weak, non-linear 
effects may limit the resonance and these are discussed in this section. 

In  the absence of a magnetic field resonance occurs only for particles moving 
with the wave and it is well known that 'particle trapping then occurs. Taking 
the wave normal in the z-direction, and working in the frame of the wave 2, zj and 
+m82+eq5coskz are constant, q5coskz being the potential. Then if i is small 
enough z oscillates in a potential trough, out of which it can never get. The 
largest possible change in 8 is then 4(eq5/m)&. It will now be shown that a similar 
trapping phenomenon occurs in the presence of a magnetic field. 

Suppose that in one turn of the helix a resonant particle suffers displacements 
from its unperturbed trajectory 6z and 6r, and velocity changes 6v,, and 6v,, 
which are small. In  the next turn of the helix the changes are almost the same 
except for z which changes by 6z+2nSv,,/Q2. There is no similar change in Sr 
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because v, is continually rotating in the magnetic field. Assuming a small enough 
amplitude the changes after n turns are nSz  + nn(n - 1) Sv,, /Q, nSr,, nSv,, and nSv,. 
If this is valid for a large enough number of turns the term in nz must be the 
dominant non-linear effect. The change in z changes the phase of the particle in 
the wave, and this of course changes the values of all the changes per turn. It is 
now assumed that only this phase change is important and that the change in 
Sv,, due to changes in vl, R and N is negligible because they are of first order in n. 
This of course depends on n being large and requires that the unperturbed field be 
nearly uniform and the wave nearly sinusoidal. Let the resonant velocity con- 
cerned be v, and let (Av = v,, - v,, and Az = z - v, t ,  so that dAz/dt = Av,,. Now 
the change of phase, which has been assumed to be the only important effect, can 
be expressed in the form 

and, since Snkv, cos O/Q is an integer for resonance, the values of &,, for successive 
turns of the helix follow a relation of the form 

SV,, = A cos (a  + kx cos O), 

SV,, = A cos (a’ + kAz cos 0). 

The average motion over many turns of the spiral may be approximated by a 
corresponding continuous variation 

dv,,/dt = (QA/2n) cos (a’ + kA2 cos O), 

and this can be integrated after multiplication by Av,, to give 

( A W , , ) ~  = C + (QA/nk cos 8)  sin (a’ + ICAz cos O), 

where C is a constant greater than - QA/nk cos 8. This shows that particles 
near enough to resonance oscillate about the velocity of exact resonance just as 
in the case of trapping with no magnetic field. The condition for trapping is 
C < QA/nk cos 8. The largest possible change in w,, is 2(2QA/nk cos O)* and, taking 
the order of magnitude of A to be the same as that of Sv,, given by (9), this gives 
4v,{bl JNp1(R) tan O/BR}* and the number of turns of the helix before the non- 
linear effect is important is 

{R cot e(b,/B) J ~ - ~ ( R ) } - & .  

6. Effect on the velocity distribution 
If collisions are negligible, Liouville’s theorem can be used to find the effect of 

a wave on the velocity distribution from its effect on individual particles. The 
velocity distribution is in principle a function of six variables in addition to the 
time, but fortunately these can be reduced. The unperturbed state being uniform 
the position of the particle enters only through the phase of the wave. The 
co-ordinate perpendicular to B and k is not involved at all, and, if a variable @ is 
introduced to represent the phase of the wave relative to the unperturbed helical 
trajectory of the particle, the other co-ordinates do not appear explicitly. We 
revert now to the frame of the wave, because then the energy of the particle is 
constant to first order. The unperturbed distribution is assumed to be sym- 
metrical about the direction of B, so that the angle representing rotation of the 
velocity about B enters only into the phase @. Consequently the relevant 
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variables reduce to the phase $ and one other, which must involve v , ~  or vl, and 
it is convenient to choose wI1. It is now possible to draw diagrams. The previous 
section has shown that the non-linear effect enters by way of vI1 and near a 
resonance we can put 

d$/dt = k cos 6 (v ,~ - vr), 

where v, is the velocity for exact resonance. dv,,/dt of course varies sinuosidally 
with $ and is proportional to the amplitude of the wave. The problem is then the 

'uli I 

i 

FIGURE 2. Trajectory of a particle. 

w sec Bv,, 

FIGURE 3. The change in the distribution function. 

same as in the absence of a magnetic field. The trajectory of a particle on a plot of 
vUII against $ is shown in figure 2, and is essentially the same as in Dungey (1961). 
The argument used there then shows that the effect of the wave is to reduce the 
rate of change of the distribution function with velocity to a very small value in 
the neighbourhood of q.. Here it must be remembered that the energy is constant 
and it is the rate of change of distribution function with the direction of v in the 
frame of the wave that is reduced. This is indicated in figure 3. It may be said 
that after the wave has become effective, the contours of constant distribution 
function must follow the arcs in figure 3 in the resonant bands. Some qualitative 
comments may be made and i t  is convenient to return to the frame of the plasma. 
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(i) The N = 0 resonance does not change vL and, if the distribution function 
decreases with uI1, this leads to an increase in the total energy of motion parallel 
to the field. 

(ii) For particles with velocities much greater than the wave, the main effect 
is to smear out anisotropy of the velocity distribution. 

(iii) If there is a resonance near vl, = 0 (which from (6) is impossible for w < Q) 
there is a tendency to increase the energy of motion perpendicular to the field. 

I am indebted to Dr F. D. Kahn for a very valuable discussion, in which he 
pointed out the error in an earlier attack. 
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Appendix Waves in a cold plasma 
The theory of waves in a cold plasma, though well known, is outlined here for 
reference. 

Working in the frame of the plasma, the velocity of the particles v is only that 
due to the wave. Taking the wave variables to behave like 

exp i (w t  + ky sin 6' + ks cos 6') 

it is convenient to use the notation 

v1 = v, + 2uy, = v, - %VY, vo = vz, 

and the suffix 1 for 0,  & 1. Then 

i ( w  ~f: la) vl = (elm) El, 

where the f. refers to the sign of the particle. 
The current density j ,  reduces to 

47rijz = w; wE,/(w - la,) (w + zap), 
where wp is the plasma frequency. The result of substituting this into Maxwell's 
equations may be written 

{ 1 - ( w / ~ ) ~ + ( w / ~ A ) ~ [ ( l - - / Q , )  (l+w/Qp)]-'}El = (k.E)kl, (A) 
where v A  is the Alfvbn velocity, w = w / k  and k is the unit vector parallel to k. 
Putting k, = cos 6' and k,, = & i sin 8, the dispersion equation is obtained by 
eliminating E from (A). Apart from w = 0,  which is a root for all values of w,  the 
dispersion equation is a quadratic for w2. After much algebra it can be written 

where 6 = ( W / V ~ ) ~  (1 - w2/c2)--1- 1 + w / Q, sl,. (B) is convenient, if the right-hand 
side is negligible, as is the case here. The factor ( V ~ / C ) ~  is small and the right-hand 

6 Fluid Meoh. 15 
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side of (B) is important only if t ( ~ , / c ) ~  is not small. Here the interest is in waves 
with w < Qe and w comparable to the particle speeds, so that ( w / c ) ~  is small and 
the factor (1-w2/c2) in the definition of 6 can also be dropped. Usually 
B2 < 4nnm,c2 and then Q, < w,. In  this case there are no modes of propagation 
at frequencies between 52, and w,. Waves of frequency greater than wp either 
have phase velocities faster than light or have the nature of plasma oscillations. 
The latter can resonate with particles, but here only waves of frequency less 
than 52, will be discussed. Neglect of the factor ( 1  - w2/c2), which is equivalent 
to omitting the displacement current, is then justified. 

When w > Q,, the protons have little effect on the wave. The corresponding 
approximation for the positive root of (B) may be written 

(W/WA)2 = (w/Q,) (cos 8 - w/Qe). ( 7 )  

There are two critical frequencies a t  which w = 0 ,  which will be referred to as 
w1 z 52, cos 8 and w2 c a,. Between w1 and w2 the mode of propagation is the 
whistler mode. Below w2 there are two modes of propagation, which are essen- 
tially hydromagnetic. When w 4 a,, the values of w are approximately W, and 
V, cos 8 corresponding to  the 'fast ' and 'transverse ' waves. 

The polarisation of the wave may be obtained from (A). For our application the 
magnetic components 6 ,  and b-, are required. From iwb = ick A E, 

In  the middle of the whistler range, using (7), (C) may be approximated by 

wb,/cEo = ( Q,/w) cos B(cot 48)'. (8) 

For application the field components are needed in the frame moving with the 
wave. However, Eo is changed only by a relativistic factor and 

wb; = ik(klE0 - (1 - w'/c') ko El}. 

The difference between b; and b, is significant only when b, is small, which rather 
curiously occurs when w is small. 


